Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

نویسندگان

  • KATHY DRIVER
  • MARTIN E. MULDOON
چکیده

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre and q -Laguerre polynomials. We use the bounds obtained by the second method to simplify the proof of the known interlacing of the zeros of (1− x2)C n and C n+1 , for −3/2 < λ < −1/2. Mathematics subject classification (2010): 33C45.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Separation Theorem for the Zeros of the Ultraspherical Polynomials

1. It will be recalled that the ultraspherical polynomials are those which are orthogonal on the interval ( — 1, 1), corresponding to the weight function (1— x2)x~1/2, X>—1/2. In what follows X = 0 will also be excluded. The coefficients of these polynomials are functions of the parameter X appearing in the weight function, and the symbol P„(x, X), indicative of this fact, will be used to denot...

متن کامل

Bounds for zeros of Meixner and Kravchuk polynomials

The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three term recurrence rela...

متن کامل

Convexity of the Extreme Zeros of Classical Orthogonal Polynomials

Let Cλ n(x), n = 0, 1, . . . , λ > −1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal in (−1, 1) with respect to the weight function (1−x2)λ−1/2. Denote by xnk(λ), k = 1, . . . , n, the zeros of Cλ n(x) enumerated in decreasing order. In this short note we prove that, for any n ∈ IN , the product (λ+1)xn1(λ) is a convex function of λ if λ ≥ 0. The result is applied to obtain some ...

متن کامل

Bound on the Extreme Zeros of Orthogonal Polynomials

Using chain sequences we formulate a procedure to find upper (lower) bounds for the largest (smallest) zero of orthogonal polynomials in terms of their recurrence coefficients. We also apply our method to derive bounds for extreme zeros of the Laguerre, associated Laguerre, Meixner, and MeixnerPollaczek polynomials. In addition, we consider bounds for the extreme zeros of Jacobi polynomials of ...

متن کامل

Inner Bounds for the Extreme Zeros of the Hahn, Continuous Hahn and Continuous Dual Hahn Polynomials

We apply Zeilberger’s algorithm to generate relations of finite-type necessary to obtain inner bounds for the extreme zeros of orthogonal polynomial sequences with 3F2 hypergeometric representations. Using this method, we improve previously obtained upper bounds for the smallest and lower bounds for the largest zeros of the Hahn polynomials and we identify inner bounds for the extreme zeros of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016